Multi-GHz Pulse-Train X-Band Capability for Laser Compton x-ray and γ-ray Sources.

2015 International Particle Accelerator Conference
May 5, 2015

David J. Gibson
Scott Anderson, Gerry Anderson, Roark Marsh, Mike Messely, Matt Prantil, Chris Barty
Scattering optical photons off an electron beam generates a keV-MeV photon beam.

\[
E_{\gamma} = \frac{2\gamma^2(1 - \cos \varphi)}{1 + \gamma^2\vartheta^2 + 4\gamma k_0 \lambda_c} E_{\text{laser}}
\]

- **Doppler upshift**
- **Energy-angle correlation**
- **Compton recoil**

Electron beam

Electron and X-ray beam

Bremsstrahlung

Compton scattered x-rays

Photon Frequency

Amplitude

Electron beam
Interaction Pulse Formats: High Peak Brightness

- Single electron bunch, 1 J, few ps laser
- ~2 ps x-ray burst
- Useful for fast, time-resolved measurements of dense material
Interaction Pulse Formats: Optimizing for Bandwidth

- No electron focus to avoid angular spectral blurring
- Large laser spot size for long Rayleigh range
- Lower electron density results in lower flux
Interaction Pulse Formats: Optimizing for Flux

- Tight focus to maximize flux at expense of bandwidth (few %)
- Good for radiography and atomic identification (e.g. Iodine k-edge imaging)

10 J, 10 ns laser running at up to 120 Hz

X-band photoinjector and accelerator section

Multi-GHz capable photoinjector drive laser

10 J, 10 ns laser running at up to 120 Hz
Multi-GHz capable photoinjector drive laser

X-band photoinjector and accelerator section

10 J, 10 ns laser running at up to 120 Hz
RF phase locked laser pulse train generated without a mode-locked oscillator

- CW Laser Source
- GHz RF Drive
- 200 m fiber
- EO Modulator
- Pre-amps
- Grating Compressor
- Power Amps
Laser produces ps-duration pulses with 11.424 GHz bursts

- **Burst Temporal Profile**
- **Spectrum**
- **Autocorrelation**

500 pulses, 11.424 GHz spacing, 2.5 µJ each
10 J, 10 ns laser running at up to 120 Hz

Multi-GHz capable photoinjector drive laser

X-band photoinjector and accelerator section
2 J commercial amp, adequate for tight-focus geometries

10 J custom amp, using high-power diode arrays and high-speed He cooling

Diode stack: 120 Hz, 126 kW

2J diode-pumped Nd:YAG head

2 J commercial amp, adequate for tight-focus geometries
Multi-GHz capable photoinjector drive laser

X-band photoinjector and accelerator section

10 J, 10 ns laser running at up to 120 Hz
Surrogate Photoinjector Drive Laser

- Amplitude Ti:Sapphire system
 - 120 µJ, 10 Hz, 200 fs, 260 nm pulses

- Pulse shaping
 - Imaged clipping aperture for hard radial edge
 - Pulse stacker to generate multiple pulses

- 10 µJ/pulse on cathode (typical)
Surrogate Interaction Laser

- Continuum Powerlite DLS 8010
 - 750 mJ, 6 ns, 532 nm pulses
- Long laser pulse reduces expected x-ray flux by a factor of 100.
X-Band Compton X-ray Source
X-Band Compton X-ray Source

- **RF Source:**
 - SLAC XL-4 Klystron
 - Scandinova Modulator
 - 50 MW, 400 ns pulse, 60 Hz

- **Stability:**
 - Flatness: 0.1%
 - Shot-to-Shot: 0.01%
 - Phase: <0.5°
X-Band Compton X-ray Source

- **Photogun:**
 - 5.59 cell standing wave
 - Cu Photocathode, QE=3×10^{-5}
 - Peak field: 200 MV/m

- **Section:**
 - T53 Travelling wave section
 - Gradient: 70 MV/m
 - Output Energy: 31 MeV
Initial electron performance

- Typical RF operation:
 - 52 MW, 120 ns pulse, 10 Hz
 - 180 MV/m in gun
 - Breakdown rate <1/hr @ 10 Hz
 - 45 MV/m in section

- Typical e-beam operation:
 - 20° injection phase
 - 75-100 pC
 - 27 MeV final energy

Beam performance nearly matches PARMELA simulations.
Poster today: TUPMA025
Multi-GHz capable photoinjector drive laser

X-band photoinjector and accelerator section

Interaction region

10 J, 10 ns laser running at up to 120 Hz
Interaction Region

[Diagram of a particle accelerator with labels for Beam Diversion Chicane, Final Focus Quads, Interaction Point, Spectrometer Dipole, Laser Entrance Port, Laser Exit Port, Beam Dump, and X-Ray CCD Camera with a focus on Electrons and Laser interactions]
X-ray flux increases with number of electron bunches

The next step is calibrating the CCD camera response and comparing with simulations.
The Indium k-edge provides a marker to indicate the spectral variation of the x-ray beam

\[E_{\gamma} = \frac{2\gamma^2(1 - \cos \varphi)}{1 + \gamma^2 \theta^2 + 4\gamma k_0 \lambda_c} E_{\text{laser}} \]

Angular-Spectral x-ray Correlation

Indium Transmission

Transmission Profile
Four electron bunches generating x-rays, observed through Indium foil

E-Beam Energy: 27.5 MeV
x-ray Energy: 28.0 keV

E-Beam Energy: 28.4 MeV
x-ray Energy: 29.8 keV

Transmission Profile

- 28.37 MeV
- 27.5 MeV
Summary

- We have commissioned an X-band accelerator, designed for Compton-scattering light source applications.
 - Emittance results match simulations, and we are still working on optimization
- We have demonstrated x-ray production from the system
 - Up to 34 keV photon energies
 - We are in the process of quantifying the x-ray flux
- We have demonstrated a GHz-capable photoinjection drive laser architecture
- We are developing a 10 J, 120 Hz interaction laser system
- We have made initial studies of e-beam performance and x-ray flux for few-bunch trains, and are exploring the charge and bunch spacing limits.