CEBAF SRF Performance During Initial 12GeV Commissioning

Rama Bachimanchi – Jefferson Lab, Newport News, VA

IPAC 2015, May 3-8
Outline

• 12 GeV Project
• C100 RF system
• C100 Commissioning
• Operational Experience
• Summary
12 GeV Upgrade Project

- 11 New cryomodules (C100)
- New RF power sources (13 kW)
- Refrigeration
- Magnets
- Additional arc-beamline
- Extraction system
- New experimental area Hall D
C100 Cryomodule

- Seven cell Cavity, 0.7 m long (high Q_L)
- 8 Cavities per Cryomodule
- Fits the existing Cryomodule footprint

R.Bachimanchi, IPAC, May 2015, Richmond, VA
High Q_L Challenges

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fundamental frequency f_0</td>
<td>1497 MHz</td>
</tr>
<tr>
<td>Accelerating gradient E_{acc}</td>
<td>> 20 MV/m</td>
</tr>
<tr>
<td>Input coupler Q_{ext}</td>
<td>3.2×10^7</td>
</tr>
<tr>
<td>Active length</td>
<td>0.7 m</td>
</tr>
<tr>
<td>r/Q</td>
<td>1300 Ω/m</td>
</tr>
<tr>
<td>Tuning sensitivity</td>
<td>0.3 Hz/nm</td>
</tr>
<tr>
<td>Pressure sensitivity</td>
<td>420 Hz/torr</td>
</tr>
<tr>
<td>Lorentz force frequency sensitivity K_L</td>
<td>~2 Hz/(MV/m)2</td>
</tr>
</tbody>
</table>

Field startup

Field stability

Phase noise plot of microphonics

R.Bachimanchi, IPAC, May 2015, Richmond, VA
RF System for C100 Cavity

- LLRF (PC/104)
- Pre-Amp
- Klystron 13 kW
- Circulator
- Directional Coupler
- HV PS
- RF amp drive
- Cavity Probe Signal
- Signal
- FPC
- Tunnel
- Service Building
- Conduit

- Stepper Controller (PC/104)
- Stepper
- Piezo Driver
- Piezo
- Heater Controller (PC/104)
- Heater
- Cavity Interlocks (PC/104)
- Interlocks
- EPICS
- Ethernet
- One LLRF / Cavity
- One Klystron / Cavity
- One System / Zone
 - Stepper
 - Piezo
 - Heater
 - HPA
 - Interlocks

R. Bachimanchi, IPAC, May 2015, Richmond, VA
RF System

- Single Zone
 - Eight 13 kW Klystrons
 - Four HV Power Supply

- Total (10 + 1 zones)
 - 80 Klystrons (13 kW)
 - 8 Klystrons (8 kW, C100-0)
RF System

- Single Zone
 - 8 LLRF Controllers
 - Stepper Controller
 - Piezo Amplifier
 - Interlocks Controller
 - High Power Amplifier Controller
 - Cryomodule Heater Controller

- Total (11 zones)
 - 88 LLRF Controllers
RF System

- RF Board
- FPGA Board
- PC/104
- Modular Interface Boards
- PC Power Supply
Acronyms used in the slides

- **SEL (Self Excited Loop)**
 - Cavity resonates at its own frequency (Phase Locked Loop like)
 - Constant forward power

- **GDR (Generator Driven Resonator)**
 - Cavities are locked to reference
 - Forward power not constant (reacts to detuning)
C100 Commissioning

- RF system commissioned into waveguide shorts
- SRF commissioning using LLRF
 - E_{max} for individual cavities
 - Field Emission measurements
 - Q_0 measurement
 - Operable gradient for cryomodule
 - Performed in SEL
- LLRF Commissioning & Machine operations
 - Cavities are operated in GDR
C100 Commissioning - Timeline

<table>
<thead>
<tr>
<th>Year</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>C100-1&2 were installed and commissioned</td>
</tr>
</tbody>
</table>
| 2012 | C100-1&2 were operated during 6 GeV Nuclear Physics run.
 | C100-2 was operated up to 108 MEV and 465 μA
 | May – Began 18 month CEBAF shutdown |
| 2013 | Installed and commissioned eight C100 cryomodules |
| 2014 | January completed C100 commissioning and began beam operation/commissioning
 | March commissioned C100-0 (Installed in Injector) |
Gradients in C100 During Commissioning

<table>
<thead>
<tr>
<th>Zone</th>
<th>SRF Commissioning</th>
<th>2.2 GeV/Pass</th>
</tr>
</thead>
<tbody>
<tr>
<td>C100-1</td>
<td>110 MV</td>
<td>94.01 MV</td>
</tr>
<tr>
<td>C100-2</td>
<td>120</td>
<td>93.8</td>
</tr>
<tr>
<td>C100-3</td>
<td>124</td>
<td>76.58</td>
</tr>
<tr>
<td>C100-4</td>
<td>105</td>
<td>79.24</td>
</tr>
<tr>
<td>C100-5</td>
<td>110</td>
<td>100.31</td>
</tr>
<tr>
<td>C100-6</td>
<td>113</td>
<td>101.8</td>
</tr>
<tr>
<td>C100-7</td>
<td>113</td>
<td>103.81</td>
</tr>
<tr>
<td>C100-8</td>
<td>109</td>
<td>100.17</td>
</tr>
<tr>
<td>C100-9</td>
<td>117</td>
<td>101.15</td>
</tr>
<tr>
<td>C100-10</td>
<td>116</td>
<td>87.57</td>
</tr>
<tr>
<td>C100-0</td>
<td>116</td>
<td>82.3</td>
</tr>
</tbody>
</table>
Operational Experience - CEBAF Commissioning

- **Commissioning**
 - 2.2 GeV/pass
 - C100 - 934 MeV
 - C50 - 457 MeV
 - C20 - 808 MeV
 - Injector design energy – 123 MeV

- **Opportunities for Improvement**
 - Reducing Field Emission
 - Enhanced Cryomodule Heater Configuration
 - Microphonics Detuning

- **Other Observations**
 - RF Control Loop Optimization
 - Klystron Drive Cables
Operational Experience - Field Emission

- Field Emission heats Beamline
- Vacuum Pump faults
- Vacuum Interlock drops Zone out of RF
Operational Experience - Field Emission

Cavity Gradients impacting Beamline Vacuum activity
Helium Processing

- Introduce helium gas into cavity vacuum space
- Run RF to clean cavity surfaces
- Warm up and pump down to remove residual gas
- Improves high-field Q, reduces x-ray production and greatly reduces incidence of arcing at the cold ceramic window
Helium Processing

- Performed on C100-5 cryomodule
Operational Experience - Cryomodule Heater Configuration

- C100-1
- Cavities 6 and 7 have very high detuning

Total heat vs Detuning in SEL

R.Bachimanchi, IPAC, May 2015, Richmond, VA
Operational Experience - Cryomodule Heater Configuration

- **When RF was off**
 - Only Electric Heat

- **When RF was on**
 - RF + Electric Heat

<table>
<thead>
<tr>
<th>He Level Percentage</th>
<th>He Level Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid Level Stable</td>
<td>Liquid Level not Stable</td>
</tr>
</tbody>
</table>

R.Bachimanchi, IPAC, May 2015, Richmond, VA
Operational Experience - Cryomodule Heaters

- Single Heater Control for the Cryomodule

- Return riser became a choke point as additional heat was applied

- Solution - Individual Cavity Heater Control
Microphonics - Mechanical Tuner Modification

- Design allows for 25 Hz Peak Detuning
- Actual peak detuning (18 Hz) was higher than expected in first cryomodules (C100-0,1,2,3)
- A detailed vibration study was initiated which led to the following design change
- A minor change to the tuner pivot plate substantially improved the microphonics detuning for the CEBAF C100 Cryomodules
- While both designs meet the overall system requirements the improved design has a larger RF power margin

<table>
<thead>
<tr>
<th>Microphonic Detuning</th>
<th>C100-1</th>
<th>C100-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMS (Hz)</td>
<td>2.985</td>
<td>1.524</td>
</tr>
<tr>
<td>6s (Hz)</td>
<td>17.91</td>
<td>9.14</td>
</tr>
</tbody>
</table>

R.Bachimanchi, IPAC, May 2015, Richmond, VA
C100 Cavity Gradients

- The drops show the cavity faulting during the day due to construction.
- RF Power could not compensate for the rapid detuning

Between 7 AM and 5 PM
Operational Experience – Microphonics Detuning

- Reduced Gradients in C100-0

Plan

- Collect Microphonics data from all C100s
- Investigate Piezo Algorithm
- Possibly switch out C100-0 for later production C100
RF Control Loop Optimization

- We observed 4 kHz oscillation when LLRF is locked
- Higher gain
 - Reduced 4 kHz oscillation
 -but control system less stable
- Loop Phase mismatch between SEL and locked condition
 - Simulation didn’t show
 - Latency issue between the two logic chains in the FPGA
 - Systematic 30 degree difference

Microphonics – compensated

4 kHz

Forward Power in GDR

R.Bachimanchi, IPAC, May 2015, Richmond, VA
Operational Experience - Crosstalk on Klystron drive cables

- Crosstalk on Drive Cables
 - Causing cavity trips on GMES fault
 - Repaired connectors and problem went away
- Crosstalk on Klystron Internal Cable
 - Terminated the input
 - Still had 15-25 watts forward power and gradient in the cavity!
 - Investigating pulling klystron solenoid and replacing cables with better shielded cables

R.Bachimanchi, IPAC, May 2015, Richmond, VA
Future Plans

- Helium Processing this summer to minimize Field Emission
- Installation of Individual Cryomodule Heater Control System
- Microphonics Detuning analysis, Piezo Algorithm studies and Implementation
- Control Loop Optimization
 - Investigate the loop phase mismatch between SEL and GDR
- Klystron Drive Cables
 - Detect the source of crosstalk
Summary

- CEBAF Initial commissioning goals achieved
 - 2.2 GeV/pass
 - 123 MeV from Injector
 - CD4A – 5 months ahead of schedule
- Beam delivery to experimental halls
- Plans for improving operability
Special Thanks to
Trent Allison, Ed Daly, Mike Drury,
Arne Freyberger, Curt Hovater, George
Lahti, Clyde Mounts,
Rick Nelson, Tomasz Plawski and
Mike Spata for their contributions in this
presentation
Questions?