AWAKE: A Proof of Principle
Proton-driven, PWFA
R&D Experiment @ CERN

presented by:
Patric Muggli
Max Planck Institute for Physics, Munich

muggli@mpp.mpg.de https://www.mpp.mpg.de/~muggli

for the AWAKE Collaboration
Some of the largest and most complex (and most expensive) scientific instruments ever built!

- **CERN LHC**: 8.6 km, 5.3 mi
- **BNL RHIC**: R=621 m
- **SLAC SLC**:
 - e^-/e^+ 0-50GeV in 3km SLC
 - e^-/e^+ 0-20GeV in 2km FACET
 - e^- 0-14GeV in 1km LCLS

"The 2.4-mile circumference RHIC ring is large enough to be seen from space"

Could plasmas be used to accelerate particles at high-gradient (>100MeV/m) and reduce the size and cost of a future collider or of a x-ray FEL?

Litos, Nature 515(6) 92 (2014)

ΔE/E~% η~30%

SLAC FACET

E200

“quantity” 42 => 84GeV in 85cm! 50GeV/m

“quality” Relativistic Electron Bunch

Defocusing Accelerating Decelerating (E_r, E_z)
PLASMA WAKEFIELD ACCELERATOR (e−)

SLAC FACET

E200

Litos, Nature 515(6) 92 (2014)

ΔE/E~% η~30%

“quantity”

“quality”

42 => 84GeV in 85cm! 50GeV/m

E0 2E0

E0 = 2.3x10^{17} \text{cm}^{-3} \quad \sigma_z \sim 20\text{μm}

n_e = 2.3 \times 10^{17} \text{cm}^{-3}

ΔE/E ~ %

η ~ 30%

−12 −10 −8 −6 −4 −2 0 2 4 6 8 10 12 14 16

Position [mm]

Energy Loss Energy Gain

Scalloping of the Beam

Experiment

Relativistic Electron Bunch

e− Driver
e− Witness
PLASMA WAKEFIELD ACCELERATOR (e−)

S. Gessner
 TUYC1
 Tues. 2pm

“quantity”

42 => 84GeV in 85cm! 50GeV/m

“quality”

SLAC FACET

E200

E0

2E0

ΔE/E~% η~30%

Litos,
Nature 515(6) 92 (2014)

© P. Muggli
P. Muggli, IPAC’15 05/04/2015
Proton-driven PWFA

Blue. PRL 90, 214801 (2003)

Existing p^+ bunches carry 10’s-100’s kJ ($\gg e^-$ bunches)

Accelerate an e^- bunch on the wakefields of a p^+ bunch

Single stage, no gradient dilution

Gradient ~ 1 GV/m over 100’s m

Operate at lower n_e (6×10^{14} cm$^{-3}$), larger (λ_{pe})3, easier life …
Short (100μm) bunches with 10^{11} p+ do not exist!!!

CERN PS-SPS-LHC $\sigma_z \sim 12$ cm

- E/E_0 ~ 10^{-2}
- $\Delta E/E \sim 1\%$
- Energy ~ 0.5 TeV
- L ~ 300 m

- E/E ~ 10^{-2}
- $\Delta E/E \sim 1\%$
- Energy ~ 0.5 TeV
- L ~ 300 m

- Existing p+ bunches carry 10’s-100’s kJ (\gg e− bunches)
- Accelerate an e− bunch on the wakefields of a p+ bunch
- Single stage, no gradient dilution
- Gradient ~1 GV/m over 100’s m
- Operate at lower n_e (6×10^{14} cm$^{-3}$), larger (λ_{pe})3, easier life …
SELF-MODULATION INSTABILITY (SMI)

\[\mathcal{N}_{\text{exp}} \approx \frac{3\sqrt{3}}{4} \left(\frac{n_b}{n_e} \frac{m_e}{\gamma M_b} \left(k_p \xi \right) \left(k_p \sigma_z \right) \right)^{2/3} \]

- **Grows along the bunch & along the plasma**
- **Initial small transverse wakefields modulate the bunch density with \(\sim \lambda_{pe} \) period**
- **Associated longitudinal wakefields reach large amplitude through resonant excitation**

Pukhov et al., PRL 107, 145003 (2011)
Schroeder et al., PRL 107, 145002 (2011)

*Kumar, PRL 104, 255003 (2010)
SELF-MODULATION INSTABILITY (SMI)

z=0, e⁻ \(k_p \sigma_z \approx 45 \)

Exponential Growth
Saturation

Radial!
NOT longitudinal!

z=5cm, e⁻ J. Vieira, IST

Distance (z) [cm]

Time = 0.00 [1/\(\omega_p \)]

\(x_z [c/\omega_p] \)
\(x_t [c/\omega_p] \)
SELF-MODULATION INSTABILITY (SMI)

Radial! NOT longitudinal!

Parameter Table

<table>
<thead>
<tr>
<th>Parameter</th>
<th>PS</th>
<th>SPS</th>
<th>SPS Opt</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_0 (GeV)</td>
<td>24</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>N_p (10^{10})</td>
<td>13</td>
<td>10.5</td>
<td>30</td>
</tr>
<tr>
<td>$\Delta E/E_0$ (%)</td>
<td>0.05</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>σ_z (cm)</td>
<td>20</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>ϵ_N (mm-mrad)</td>
<td>2.4</td>
<td>3.6</td>
<td>3.6</td>
</tr>
<tr>
<td>σ_r^* (μm)</td>
<td>400</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>β^* (m)</td>
<td>1.6</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

SPS beam: high energy, small σ_r^*, long β^*

Experimental area:

Plasma:

$n_e \sim 7 \times 10^{14}\text{cm}^{-3}$ for $k_p\sigma_r \approx 1$

$\lambda_{pe} \sim 1.3\text{mm} \ll \sigma_z$

$f_{pe} \sim 240\text{GHz}$

$L_p \sim 10\text{m} \approx 2\beta^*$

© P. Muggli
AWAKE EXPERIMENT @ CERN

First experiments: 2016

 Plasma, Rb vapor
 10m, 10^{14}-10^{15} \text{cm}^{-3}

Laser dump Diagnostics
OTR/CTR Diagnostics

p^+ from SPS

Final Focus

Ionizing Laser Pulse

SMI Acceleration

EOS Diagnostic

Laser dump

p^+ dump

"Sharp" (<<\lambda_{pe}) start of the beam/plasma interaction for SMI seeding
AWAKE: will seed with ionization front!

◊ No seed no SMI (over 10m)
Short laser pulse creates the plasma and seeds the SMI

\(\sigma_z \sim 12 \text{cm} \gg \lambda_{pe} \sim 1.2 \text{mm} \ (n_e \sim 7 \times 10^{14} \text{cm}^{-3}) \Rightarrow \text{Self-modulation Instability (SMI)}\)

\(\sigma_{z \text{ laser}} \sim 30 \mu\text{m} (100 \text{fs}) \ll \lambda_{pe} \Rightarrow \text{good seed} \)

Kumar, Phys. Rev. Lett. 104, 255003 (2010)
Short laser pulse creates the plasma and seeds the SMI

- $\sigma_z \sim 12\text{cm} >> \lambda_{pe} \sim 1.2\text{mm}$ ($n_e \sim 7 \times 10^{14}\text{cm}^{-3}$) => Self-modulation Instability (SMI)*
- $\sigma_{z,\text{laser}} \sim 30\mu\text{m}(100\text{fs}) << \lambda_{pe}$ => good seed

First experiments: 2016

The wakefields grow …

Simulation by K. Lotov
The long ($\sigma_z \sim 12\text{cm}$) p^+ bunch self-modulates with period $\lambda_{pe} \sim 1.2\text{mm}$ ($n_e \sim 7 \times 10^{14}\text{cm}^{-3}$)
SMI DIAGNOSTICS

2016

Laser

Final Focus

Ionizing Laser Pulse

p⁺ from SPS

OTR

SMI Acceleration

CTR

Plasma, Rb vapor

10m, 10^{14}-10^{15} cm⁻³

EOS Diagnostic

p⁺ dump

OTR/CTR Diagnostics

Heterodyne Measurement

Streak Camera

≤1ps resolution

Schottky Diode

2016

\(\lambda_{pe} = 1.2 \text{mm} \Rightarrow 4 \text{ps} \)

for \(n_e = 7 \times 10^{14} \text{cm}^{-3} \)

\(\tau_{RF} = 1/f_{IF} \)
The SM p+ bunch resonantly drives wakefields
AWAKE EXPERIMENT @ CERN

Laser

Final Focus

Ionizing Laser Pulse

p⁺ from SPS

Plasma

10m, \(10^{14}-10^{15}\) cm\(^{-3}\)

EOS Diagnostic

p⁺ dump

Laser dump Diagnostics

OTR/CTR Diagnostics

SMI Acceleration

Long beam: \(\alpha_z \sim 100 \lambda_p\)

Propagation direction

Invert e⁻

On-axis \(E_z\) field

\(E_{acc}\) [MV/m]

Position [cm]

500MV/m

1σ \(p⁺\)

\(~GV/m\) accelerating field

Vapor

Laser

\(~GV/m\) accelerating field

Large amplitude wakefields: 0.1-1 GeV/m

© P. Muggli
The wake is slowed down. Its minimum gamma-factor is
\[\gamma_{\text{min}} \approx 40 \]
This is order of magnitude below that of the beam.

Phase velocity of the wake

\[v_{\text{ph}} - c \]

\[10^{-4} \]

\[Z, m \]

\[(v_{\text{ph}} - c) / c, x 10^{-4} \]

Figure:
- Laser
- Ionizing Laser Pulse
- e⁻ gun
- e⁻ injection
- Plasma
- 10m, \(10^{14} - 10^{15} \) cm⁻³
- Final Focus
- p⁺ from SPS
- SMI Acceleration
- Injection experiments: 2017
- e⁻ → λ_{pe}
- \(\sigma_{\text{ze}} \)
- Laser dump
- OTR/CTR Diagnostics
- e⁻ spectrometer
- 0.1 → 2 GeV
- Pukhov et al., Phys Rev Lett (2011)

Parameters:
- \(E_0 = 15 \text{ MeV} \)
- \(\varepsilon_N = 2 \text{ mm-mrad} \)
- \(\xi_{\text{inj}} \approx 1.5 \delta_{zp} \approx 18 \text{ cm} \)
- \(\sigma_{\text{ze}} \approx 3 \text{ mm} \approx 1.5 \lambda_{pe} \)
- \(\eta_{\text{trap}} \approx 40\% \)
- \(E_{\text{mean}} \approx 1.3 \text{ GeV} \)
- \(\Delta E / E_{\text{mean}} \approx 12\% \)

Notes:
- Accelerate e⁻ to multi-GeV energies with \(\sim \) GeV/m gradient
The wake is slowed down. Its minimum gamma-factor is \(\gamma_{\text{min}} \approx 40 \), which is an order of magnitude below that of the beam. This can be calculated using the equation:

\[
\frac{v_{\text{ph}} - c}{c} \times 10^{-4}
\]

where \(v_{\text{ph}} \) is the phase velocity of the wakefield.

In the growth phase, \(v_{\text{ph}} \approx c \) in the saturation phase. External injection after the saturation of SMI can be used to accelerate electrons to multi-GeV energies with \(\sim \) GeV/m gradient.

- **Injection Point**
- **Elec. gun**
- **Laser**
- **H-Q-VLPL3D simulation**
- **Phase velocity of wakefield < \(v_{\text{ph}} \approx c \) in the growth phase**
- **External injection after saturation of SMI**
- **Pukhov et al., Phys Rev Lett (2011)**
- **F. M. Velotti, J. S. Schmidt, WEPWA039**
- **O. Mete, WEPWA059**
- **U. Dorda, WEPWA007**
- **L.C. Deacon, WEPWA045**

Parameters:
- \(E_0 = 1.6 \text{ MeV} \)
- \(\varepsilon_N = 2 \text{ mm-mrad} \)
- \(\varepsilon_{\text{inj}} \approx 1.5 \sigma_{\text{zp}} \approx 18 \text{ cm} \)
- \(\sigma_{\text{ze}} \approx 3 \text{ mm} \sim 1.5 \lambda_{\text{pe}} \)
- \(\eta_{\text{trap}} \approx 40\% \)
- \(E_{\text{mean}} \approx 1.3 \text{ GeV} \)
- \(\Delta E/E_{\text{mean}} \approx 12\% \)
- \(\sigma_0 = 200 \mu\text{m} \)
- \(\sigma_0 = 300 \mu\text{m} \)
AWAKE EXPERIMENT @ CERN

- CERN team already translated dreams into CAD and more
- SMI experiments Q4 2016 …
p⁺ bunches interesting because they carry large amounts of energy (10-100’s kJ)

2016: study the physics of p⁺ bunch SMI (radial modulation, seeding, …)

2017: probe the accelerating wakefields with externally injected e⁻

2017: study accelerator physics

Set-up a comprehensive and long term p⁺-driven plasma-based accelerator program at CERN

Develop long, scalable and uniform plasma cells

Develop schemes for the production of short p⁺ bunches

Explore applications for a p⁺-driven PWFA
SUMMARY

✧ **p⁺** bunches interesting because they carry large amounts of energy (10-100’s kJ)

✧ 2016: study the physics of **p⁺** bunch SMI (radial modulation, seeding, …)

✧ 2017: probe the accelerating wakefields with externally injected **e⁻**

✧ 2017: study accelerator physics

Set-up a comprehensive and long term **p⁺**-driven plasma-based accelerator program at CERN

Develop long, scalable and uniform plasma cells

Develop schemes for the production of short **p⁺** bunches

Explore applications for a **p⁺**-driven PWFA
SUMMARY

✧ **p⁺ bunches** interesting because they carry large amounts of energy (10-100’s kJ)

✧ 2016: study the physics of p⁺ bunch SMI (radial modulation, seeding, …)

✧ 2017: probe the accelerating wakefields with externally injected e⁻

- Develop long, scalable and uniform plasma cells
- Develop schemes for the production of short p⁺ bunches
- Explore applications for a p⁺-driven PWFA

Equation

\[E_\text{0} = 15 \text{MeV} \]
\[E_\text{N} = 2 \text{mm-mrad} \]
\[\zeta_\text{inj} \sim 1.5 \sigma_{z, p} \sim 18 \text{cm} \]
\[\sigma_{z, e} \sim 3 \text{mm} \sim 1.5 \lambda_{pe} \]
\[\eta_{\text{trap}} \sim 40\% \]
\[E_{\text{mean}} \sim 1.3 \text{GeV} \]
\[\Delta E / E_{\text{mean}} \sim 12\% \]
p⁺ bunches interesting because they carry large amounts of energy \((10-100's\ \text{kJ})\)

2016: study the physics of p⁺ bunch SMI (radial modulation, seeding, …)

2017: probe the accelerating wakefields with externally injected e⁻

2017⁺: study accelerator physics
p+ bunches interesting because they carry large amounts of energy (10-100’s kJ)

2016: study the physics of p+ bunch SMI (radial modulation, seeding, …)

2017: probe the accelerating wakefields with externally injected e-

2017+: study accelerator physics

Set-up a comprehensive and long term p+-driven plasma-based accelerator program at CERN

Develop long, scalable and uniform plasma cells
p⁺ bunches interesting because they carry large amounts of energy (10-100’s kJ)

2016: study the physics of p⁺ bunch SMI (radial modulation, seeding, …)

2017: probe the accelerating wakefields with externally injected e⁻

2017⁺: study accelerator physics

Set-up a comprehensive and long term p⁺-driven plasma-based accelerator program at CERN

Develop long, scalable and uniform plasma cells

Develop schemes for the production of short p⁺ bunches

Explore applications
SUMMARY

✧ p⁺ bunches interesting because they carry large amounts of energy (10-100’s kJ)
✧ 2016: study the physics of p⁺ bunch SMI (radial modulation, seeding, …)
✧ 2017: probe the accelerating wakefields with externally injected e⁻
✧ 2017⁺: study accelerator physics
✧ Set-up a comprehensive and long term p⁺-driven plasma-based accelerator program at CERN
✧ Develop long, scalable and uniform plasma cells
✧ Develop schemes for the production of short p⁺ bunches
✧ Explore applications for a p⁺-driven PWFA
New Features in v2.0

- Bessel Beams
- Binary Collision Module
- Tunnel (ADK) and Impact Ionization
- Dynamic Load Balancing
- PML absorbing BC
- Optimized higher order splines
- Parallel I/O (HDF5)
- Boosted frame in 1/2/3D

Ricardo Fonseca: ricardo.fonseca@ist.utl.pt
Frank Tsung: tsung@physics.ucla.edu

http://cfp.ist.utl.pt/golp/epp/
http://exodus.physics.ucla.edu/

Benchmarking with:

THANK YOU!

J. T. Moody
WEPWA047

F. M. Velotti, J. S. Schmidt
WEPWA039

O. Mete
WEPWA059

L.C. Deacon
WEPWA045

U. Dorda
WEPWA007

V. K. Berglyd Olsen
WEPWA026

P. Muggli
WEPWA007

P. Muggli
WEPWA008

THANK YOU