Beam Stability of the Taiwan Light Source Storage Ring

Hung-Chiao Chen*, Hsin-Hui Chen, Szu-Jung Huang, Jar-An Li, Yao-Kwang Lin, Chang-Hor Kuo, Yung-Sen Cheng
National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan, R.O.C.

Abstract
The Taiwan Light Source Storage Ring (SR) has been in operation since many years ago. Maintaining best stability of the electron beam is becoming the main challenge. This study endeavored to improve the electron beam stability and injection efficiency of the Taiwan Light Source Storage Ring (SR). Employing the artificial neural network (ANN)-constructed experiment design to analyze and optimize the storage ring betatron tunes. This report outlines the details of the beam stability and injection efficiency process experiment.

INTRODUCTION
Using the basic theory of response surface methodology (RSM), this study aimed to improve the electron beam stability and injection efficiency of the National Synchrotron Radiation Research Center (NSRRC) storage ring. Artificial neural network (ANN) design software, known as computer-aided formula engineering (CAFE) [1], was used to analyze and optimize the betatron tunes of the storage ring. We aimed to identify the main influential betatron tunes of the storage ring and, through optimization, develop the betatron tunes of the storage ring adjustment program that best stability and maximizes injection efficiency of the electron beam.

DATA ANALYSIS
Artificial Neural Network
ANNs are construction methods for nonlinear models. Among which, back-propagation networks (BPNs) are currently the most representative and commonly applied of the ANN learning models [2, 3].

Beam Stability Analysis
After calculating the ANN model construction, we obtained the “train- and -test” error convergence curve, as shown in Fig. 1. The representative model construction was ideal because they appear to converge after approximately 1,500 computations.

Figure 1: The “train- and -test” error convergence curve.

The “train- and -test” scatter plots for the training sample is shown in Fig. 2 respectively. The predictive ability of the representative model was also ideal [4].

Figure 2: The “train- and -test” scatter plot of the training samples.

Analysis of the experimental results included sensitivity analysis and influence line analysis. Sensitivity analysis was conducted using weight value analysis graphs, and influence line analysis was conducted using a main effect diagram with status. The sensitivity analysis results revealed the significance of quality factors, as shown in Fig. 3. We found the betatron tune f_y quality factor had the highest significance.

* The weight of the betatron tune f_x was 0.015.
* The weight of the betatron tune f_y was 0.061.

Figure 3: A bar graph of Y significance.

* chiao@nsrrc.org.tw
Analysis of the results clearly showed the curved figure and significance of the quality factors, as shown in Fig. 4.

![Figure 4: Status effect diagram.](image)

The ANN-optimized parameter solution is shown in Fig. 4. The storage ring electron beam stability was estimated as 0.1029%. The betatron tune f_x was 758.93kHz, f_y was 441.53kHz.

Injection Efficiency Analysis

After calculating the ANN model construction, we obtained the “train- and -test” error convergence curve, as shown in Fig. 5. The representative model construction was ideal because they appear to converge after approximately 250 computations.

![Figure 5: The “train- and -test” error convergence curve.](image)

The “train- and -test” scatter plots for the training sample is shown in Fig. 6.

![Figure 6: The “train- and -test” scatter plot of the training samples.](image)

Analysis of the experimental results included sensitivity analysis and influence line analysis. Sensitivity analysis was conducted using weight value analysis graphs, and influence line analysis was conducted using a main effect diagram with status. The sensitivity analysis results revealed the significance of quality factors, as shown in Fig. 7. We found the betatron tunes f_x and f_y quality factor had the highest significance.

- The weight of the betatron tune f_x was 0.043.
- The weight of the betatron tune f_y was 0.034.

![Figure 7: A bar graph of Y significance.](image)

Analysis of the results clearly showed the curved figure and significance of the quality factors as shown in Fig. 8.

![Figure 8: Status effect diagram.](image)

The ANN-optimized parameter solution is shown in Fig. 8. The storage ring electron beam injection efficiency was estimated as 19.54%. The betatron tune f_x was 766.89kHz, f_y was 439.06kHz.

Beam Stability and Injection Efficiency Analysis

After calculating the ANN model construction, we obtained the “train- and -test” error convergence curve, as shown in Fig. 9. The representative model construction was ideal because they appear to converge after approximately 100 computations.
The “train- and -test” scatter plots for the training samples are shown in Figs. 10, 11.

Analysis of the experimental results included sensitivity analysis and influence line analysis. Sensitivity analysis was conducted using weight value analysis graphs, and influence line analysis was conducted using a main effect diagram with status. The sensitivity analysis results revealed the significance of quality factors, as shown in Figs. 12, 13. We found the betatron tunes f_x quality factor had the highest significance.

The ANN-optimized parameter solution is shown it. The storage ring electron beam stability was estimated as 0.0428% and injection efficiency was estimated as 15.4420%. The betatron tune f_x was 753.48kHz, f_y was 437.05kHz.

CONCLUSIONS

This study endeavored to analysis the best stability and injection efficiency of a storage ring electron beam at the NSRRC. Using BPN for analysis and the train- and -test experiment method to effectively estimate the generalization error. Analysis of the experimental results The storage ring electron beam stability was estimated as 0.1029%. The betatron tune f_x was 758.93kHz, f_y was 441.53kHz. The storage ring electron beam injection efficiency was estimated as 19.54%. The betatron tune f_x was 766.89kHz, f_y was 439.06kHz. The storage ring electron beam stability was estimated as 0.0428% and injection efficiency was estimated as 15.4420%. The betatron tune f_x was 753.48kHz, f_y was 437.05kHz. These results demonstrate the significant benefits of using ANN parameter optimization theory hoping to enhance accelerator operation quality.

REFERENCES